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ABSTRACT

Using a generally accepted model we present a comprehensive analysis (within the page limitation) of an Euler-
Bernoulli beam with PZT sensor-actuator and pure rate feedback. The emphasis is on the root locus — the
dependence of the attainable damping on the feedback gain. There is a critical value of the gain beyond which the
damping decreases to zero. We construct the time-domain response using semigroup theory, and show that the
eigenfunctions form a Riesz basis, leading to a “modal” expansion.

1. INTRODUCTION

In this paper we present a comprehensive analysis of an Euler-Bernoulli beam with PZT sensor-actuator along its
entire length. The sensor output is a charge in a condenser and the actuator input is the current, a differentiator
circuit being then an essential component, yielding “rate feedback.” We use a generally accepted model.} =4 Tzou
et al. present purely computational results and seem to be unaware of a purely theoretical analysis given earlier by
Chen et al.5 The most important design parameter is the control gain and the damping attainable — we construct a
full root-locus analysis (omitting details to keep within the page limitation). We also unearth a curious phenomenon
__ the existence of a deadbeat mode (real eigenvalue) not noticed hitherto. We show that the eigenvalues are the
roots of an entire function of order one-half, proving in particular the existence of a countably infinite number of
eigenvalues. We also show that the eigenfunctions form a Riesz basis. We also construct the Green’s function for
the nonhomogeneous eigenvalue problem. As in Chen et al. we use the theory of semigroups of operators to obtain
the time-domain solution. Our proof of the exponential stability is different from that in Chen et al., as is our
choice of the function space. We note that a similar analysis for a Timoshenko model (a “smart string”) is given
in Balakrishnan,® where there is a critical value of the gain at which there are no eigenvalues and the semigroup is
actually nilpotent (“disappearing” solution).

2. MAIN RESULTS

The Euler-Bernoulli model formulates as
cf"(t,s) +mf(t,s)=0, O0<s<L, 0<t
ft,0=0= f'(t,0); f"(L)=0 (1)
ef"(t, L) +af'(t,L)=0
where f(t,s) is the displacement and the superdots indicate derivative with respect to ¢ and the primes indicate
derivative with respect to s. It is convenient to set

V=

o3

For a precise formulation of the time-domain response we need to specify first the choice of function spaces. We
pick L2[0, L] for f(t,-). Let A, denote the operator defined by

Aof — chHI

where

D(Ao) = [f 1, f" 1", f"" € Lal0, L); £(0) = 0= £'(0) = (L)}



Let
H = La[0,L] x El

Define the operator A with domain and range in H by:

Aof
Cf”(L)

f
b

]

l, Az =

-
with domain
D(A) = Hi‘ feD(A,) and b= f’(L)]

It is convenient to adopt the notation
Apz = cf"(L), =z € D(A).

Then for z in D(A):

L
/ ef"(s) T(8) ds + ef"(L) F(L)

0
L
- . / £ (s)]? ds.
0

It is readily seen that A has dense domain and is self-adjoint and nonnegative definite, and has compact resolvent.
Also zero is not an eigenvalue. Let v A denote the positive square root. On the product space

D (\/I) x L0, L]

{Az,z]

introduce the “energy” inner product

lY,Z]g = [\/Zyl.\/zn] + mlya, 29

" )

v2

Y = . Z =

22
D(\/X) = Hil \ £ € Lal0,L] and b= f(L), £(0) = f'(0)=0].
For y; in D(A), we see that

[Y,Y]e = [Ay1,11] + mly2, v2] ~ “energy” (potential + kinetic).

We denote the product space under this inner product by He and note that it is a Hilbert space. Let A denote
the operator defined by:

f? N
Ay = | =@ |y = %= | @)
f2
=Aofy fa(*)
and
f1() fa(")
D(A) = |z= € P(A)], ep(Va).
W = o= poy [€P@] | iy | <2 (V)
Thus defined we can verify that
D(A) = D(A")

and that A is dissipative:

1(A+A")Y, Y] = Re[AY, Y]z = Ppl® = 2 A L)



It is readily verified that .4 has a compact resolvent and that A generates a Cp contraction semigroup. With these
definitions, the system (1) goes over into the abstract formulation:

Y (t) = AY (2). (2)
This choice of the function space is technically different from that in Chen et al.®

Eigenvalues and eigenfunctions of A
Our primary interest is in the modal decomposition — the eigenvalues of A and the corresponding eigenfunctions.
Or, equivalently, in the resolvent of A. Let R(}, A) denote the resolvent of A. Let

R A)Y =2
where hy
Y = b
ko
Since Z € D(A), we can write
f1()
z = | fi(L)
fa()
and
(W -AZ=Y
yields
AMi=fr=h
Afa+ 21 . ha
m
(L) + ——cfla(L) = b
Hence
A202f,(s) + f1'(s) = v2(ha(s) + Ahy(s)), O0<s<L
Aefi(L) +cfi(L) = ab (3)
[0) =0 = fi(0) = fi"(L).
Eigenvalues

First we consider the eigenvalue problem, setting
hy=0=hy; b=0.

Let _ »
v = mew/?em’/-t, 74 — -2

where .
A= |Ale?.

Then the solution satisfying the conditions at zero yields:
f1(s) = a(Coshys — Cosys) + b(Sinhys — Sinvys), 0<s< L.
The constants ¢ and b are then determined by the conditions at L:
a(Aay(SinhvyL + SinvL) + cv*(CoshvyL + CosvL)) + b(Aay(CoshyL — CosyL) + cy?(SinhyL + SinyL)) = 0

a73(Sinh7L —SinvyL) + b’ys(Costh + Cos~L) = 0.



Let
Aavy(SinhyL + SinyL) Aay(CoshyL — CosyL)
2 2,qQ; :
HO) = + ¢y?%(CoshyL + Cos yL) + ¢v?(SinhyL + Sin+L) (4)
v3(SinhyL — Sin~L) v3(CoshyL + CosyL)

and
D(x) = Det H(A).

Then

D) = (v*)[(CoshyL + CosyL)(Ae(SinhvL + SinyL) + ¢y(CoshyL + CosyL))
— (SinhyL - SinyL)(Aa(CoshyL — CosyL) + cy(Sinh~yL + SinyL))]
= 2v*[cy(1 + CoshyL CosyL) + Aa(SinhyL CosyL + CoshvL SinyL)]. (5)

We note that zero is not an eigenvalue. The eigenvalues {Ax} are thus determined by the nonzero roots of

¢v(1 + CoshyL CosyL) + Aa(SinhyL CosyL + CoshyL SinyL) = 0

Or, using
N
14
we have .
(1 4+ CoshyL CosyL) — il (SinhvyL CosyL + CoshyL SinyL) = 0. (6)
ve

Theorem 2.11
A has exactly one real-valued eigenvalue.

Proof
Setting L = 1, and using a to denote 2, and expressing the trigonometric products in (6) as sums, we have
f = 1 + Coshy Cosy — iay(Sinhy Cosy + Cosh~y Sin~)
f = 1+ 3(Cosvy(1+1) + Cosv(l —1i))

— iav}[Sinhy(1+i) + Siny(1+1i) + Sinh~(1-i) + Siny(1-1d)].
Hence making the 1:1 transformation
y=z(i—1)

we obtain
f(v) = g(z) = 1 + 3(Cos2z + Cosh2z) — z(Sin2z + Sinh2z) (M)

yielding an equivalent expression for determining the eigenvalues. Note that g(-) is real-valued for real values of z.
Further
9(0)=2

while, as z — o0, (z real), we note that
9(z) — —o0.

Hence there is a positive real root. Denote it zo. Then
A= -t = —z¥(i-1)% = =22

Hence
Ag = —2.’1:(2)

tDue to J. Lin; private communication.



is an eigenvalue. We note that z, is the ony real-valued root of g(-). Indeed, if there is a real-valued eigenvalue of

A, we must have, denoting it by Ay,
)\1 = —2.1:%

and zg must be a root of g(-). Hence
Zo=271.

Or, )o is the only real-valued eigenvalue of A.

We note that the corresponding eigenfunction is given by

#1(s) = (Coshyy — Cosyo)(Coshvygs — Cosves) — (Sinhvy — Sinvg)(Sinhvgs — Sinygs)
where
vo=zoli—1), A= -2zl

Theorem 2.2 (Chen, et al.?)

Let {A;} denote the eigenvalues, and assume that

IAe| — oc.
Then
lim ReXx = 7—. (8)

Proof
See Chen et al.® for a proof.

The authors of Chen et al. however do not appear to offer a proof of the fact that the eigenvalues {Ax} are
nonfinite in number. The fact that the resolvent is compact is not adequate to establish this; the compactness only
assures that if nonfinite in number then {\x} can be arranged so that

Ak+1] = [Akl

and
|Ak] — o0 as k— o0

For proving the fact that eigenvalues are denumerably infinite we can indicate a general technique.

Theorem 2.3
The eigenvalues {Ax} are denumerably infinite and such that

e (3)

< oo, 9)

Proof
From (6) we see that for each a, the eigenvalues are the zeros of the function

d(A) = (1 + Cosh~yL CosvL) — i(-ca—u) v(SinhyL CosyL + Cosh~yL SinyL). (10)

As a power series expansion will show, this is an entire function of the complex variable A. Moreover it is of
exponential type, of order %, and of completely regular growth. Further we can calculate that

h(8) = Tim log|d(re®®)] = v2 max (|Sin}|, |Cos§l).
r—o0



Let n(r) denote the number of zeros of d(-) in the circle of radius r centered at zero.

R.P. Boas (see Levin’) we have:

Hence

. n(r)
Jm g =

1 2
—/ h(8) d68 > 0.
4 0

lim n{r) = oo,

r—00

Then by the theorem of

or, the number of zeros is not finite. Moreover the function is of class A (see Levin? for the definition) since

Rlog|d(s)d(~s)|
aup [ 2ERG

13 52 ds < Mg < o
3

The result (9) is a consequence. Q.E.D.

Remark

Applying Jensen’'s Theorem we have

2Ty i
d ¢ .
! / ____(re ) re'd do = n(r).
[¢]

2r d(ret)

We can acutally compute this as a quick means of locating eigenvalues. There is a jump of 2 corresponding to each
eigenvalue and its conjugate. This is shown in Figure 1 for

Eigenfunctions

a

Lev

= .01

The eigenfunction corresponding to the eigenvalue A is given by

where
oi(s) =

where

or, we may take

ex = (Coshy,L — Cosv, L), dp =

or,
ok(s) =
Correspondingly:

Ok
¢x(L)
Aok

® = Ag

ck(Coshy,s — Cosvs) + di(Sinhy,s — Sinvy,s)

Ck

H(A\x) dx

¢4 (L) = 2A7(Coshy,L — Cosvy,L)Sin~,L.

~(Sinhy,L — Sin~,L)

Ax[(Coshy,L — Cosy,L)(Coshyys — Cosvys) — (SinhyeL — Sinvy,L)(Sinhyes — Sinvy,s)]. (11)

The coefficient Ax may be chosen for appropriate normalization. For example we may make

l[l] = 1.

Note that Mg is an eigenvalue of A* and the corresponding eigenvector is:

6"
Pu(L)
~Xkdk(")

¥, = B



where B, is again a “normalization” scalar. Note that
L L _
(s, Vilg = c/ oh(s)?ds — mx\i/ ox(s)? ds | AxBx
0 0

L
= 4cAkBk7:ckdk/ (Coshyns Cosyns + Sinhyns Sinyns) ds
0

4cckdkAk-§k'yk Cosh v, L Sin~, L
# 0.

In particular we may choose Ag, By so that
(@, Yile = 1. (12)
Further using a result of Gohberg and Krein!® (we omit the details) we can establish that {®k, ¥i} with the

normalization (12) actually yield a Riesz basis for Hg. In terms of this basis we have the (“modal”) expansion for
the solution of (2)

oo

Y(t) = ) axe™'ds (13)

1
where
ax = [Y(0), VilE

and as an easy byproduct, using (8), we see that the semigroup generated by A is exponentially stable (established
in Chen et al. by different arguments).

Root Locus
Let us consider how the eigenvalues behave as the gain a is varied. For this purpose it is convenient to define

d(ha) = M(A) + Z%N(,\)

where
M()) = 1 + CoshvyL CosvyL
N(A) = :f(Sinth CosyL + Cosh~vL Sin+L).
9

Because of the analytic dependence of d(A; a) on a, we can invoke the theory of algebraic or algebroidal functions®

and note that
d(A(a);a) = 0

will define A(a) as a multivalued analytic function of a with isolated singularities, if any. In particular this allows
us to define the sequence {Ax(a)}, k = 1,2,... such that

,\0=ﬂ‘-i— = (2k-1)Z
k() Lzl/, Bi ( )2+€k

(the “clamped-free” beam modes) and

. i(kn — e'k)?
amg o) =
(“clamped-rolling” modes) and the real root
do(a)
is such that
lim do(a) = 0, lim Ao(a) = —oc.
a—o0 a—0

A plot of the locus of the real root is shown in Figure 2. Moreover

-1 N())
cw M)+ N () hoauey

Xela) =



In particular

A(0) = —

We can show that

.2
%(Re)k(a)) i (-3—) a=0 (14)

2a2L "’
d
— (ImAg(a)) 2 0.
da

A root locus of the first mode is shown in Figure 3. The damping (= |ReAx|) increases with the gain until a
critical value of the gain is reached and thereafter decreases to zero. Note that by virtue of (14) we have actually
“proportional damping” for small gain. A plot of the critical value of the gain versus the mode number is given in
Figure 4.

Resolvent
Let us now return to the resolvent — or solving (3). We note that

L)
o0 8) = %5/ (Sinh1(s — o) — Sinv(s = 0)) v? (h2(0) + A1 (0)) do
0
is a “particular” solution of
A28+ fI" = Vi(hy + Ahy)

such that
f1(0) = £;(0) = 0.

Hence we can express the solution fi(A, s), where we have included A to indicate the dependence on A, as:
fi(x,s) = g(r,8) + a(r)(Coshvys — Cosvys) + b(A)(Sinhys — Sinys), O0<s<L
where the coefficients a(}), b()) are determined from

a(}) ab—arg'(A, L) —cg"(A L)

b(A)

l = H(\)™!
—g”l(A,L)

where the primes again denote derivatives with respect to the variable s. Hence letting

hin(A)  hpa(d)

H(\) =
hoi(A)  ha2(A)

and defining

N haa(A)  —hi2(A)

AHQ) =

—ha1(A) h11())

so that )

H(\H(\) = DI = HM)H(N),

a()) = Bﬁ [Ra2(A)(ab —arg' (A, L) — cg"(A, L)) + h1a(A)g"" (3, L)]
) = gy [-An(3)(eb = arg (3, 1) — ", 1) = A" (L)



We can cast the Green's function in the form:

L
*K(X; s,0) [ K(x0,9)
A = ——e. A DS SR
f1(r,s) A DO h(c) do + D0) h(o) do
+ BO—Z)\—) [h22(3)(Cosh ys — Cosys) — ha1(A)(Sinhvys — Sinvs)]
A
K(\;0,8) = (Coshys— Cosvys) [(21112 - ?:—2 hgg) Coshy(L — o) + (2h12 + zgzihgg) Cosv(L — o)
Y
h
_ Zehn (Sinhy(L — o) + Siny(L — a))]
Ah —~2a)
+ (Sinh~ys — Sinvs) [(20 221 - 2hu) Coshy(L — o) + (.Lzhl’- - 2h11> Cosy(L — o)
v Y
2chy . .
+ (Sinhy(L — o) + Siny(L —0))|, s<o (15)
h = m(h2 + Ahl)
D(A) = —22%2%[ey(1 4+ CoshyL CosyL) + Aa(SinhyL CosyL + CoshyL SinvyL)].
Finally
hl fl(Als)
R(MA) b | = f1(»,0)
h2 Af1(R, 8) = ha(s)

Note that setting a = 0 in (15) we get the Green’s function for the clamped/free-free beam. In particular

hy Kha e
R(0,A4) | h1(0) | = | (Kh2)(0) | + ah1(0)| £
he —hy 0

where K ho is the function given by

E/’(L—O’)hg(d’) do + E/,(L—a)hg(a) do, 0<s<L.
c Jo ¢ JL
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Figure 3: Root Locus: First Mode A = ¢ + iw.
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